The dynamics of multimodal integration: The averaging diffusion model.

نویسندگان

  • Brandon M Turner
  • Juan Gao
  • Scott Koenig
  • Dylan Palfy
  • James L McClelland
چکیده

We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling different decision strategies in a time tabled multimodal route planning by integrating the quantifier-guided OWA operators, fuzzy AHP weighting method and TOPSIS

The purpose of Multi-modal Multi-criteria Personalized Route Planning (MMPRP) is to provide an optimal route between an origin-destination pair by considering weights of effective criteria in a way this route can be a combination of public and private modes of transportation. In this paper, the fuzzy analytical hierarchy process (fuzzy AHP) and the quantifier-guided ordered weighted averaging (...

متن کامل

Nonlinear energy harvesting through a multimodal electro-mechanical system

A semi-analytical method is used to illustrate the behavior of a multimodal nonlinear electromechanical system which is under base-excitation. System is considered as piezo-ceramic patches attached to a cantilever beam coupled to a resistive load. The cantilever beam is modeled as a nonlinear Timoshenko beam using Assumed Mode method and equations of motion are derived through Lagrange's equati...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

New Approaches in 3D Geomechanical Earth Modeling

In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Psychonomic bulletin & review

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2017